

THE CITY OF PANAMA CITY PROUDLY PRESENTS THE 2018 DRINKING WATER QUALITY REPORT

This year's Annual Water Quality Report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts made to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our surface water source is water drawn from Deer Point Reservoir. The City of Panama City purchases water from Bay County Utility Services.

The Bay County Water Treatment Plant uses a conventional treatment process consisting of coagulation, flocculation, sedimentation, filtration, pH adjustment, disinfection, fluoridation and corrosion control. The treatment process includes adding lime occasionally to provide additional alkalinity to the raw water so that it can react with the primary coagulating chemical, ferric sulfate that is added to remove particles and organics. Polymer is also added to assist in the coagulation process. Sodium Hypochlorite is added to maintain disinfection in the distribution system. The addition of zinc orthophosphate reduces the corrosiveness of the water. Fluoride, in the form of hydrofluorosilicic acid, is added as a supplement to prevent tooth decay. Lime is also added at the end of the process to increase the pH. These processes are needed to meet the drinking water standards as set by the United States Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP).

If you have any questions about this report or concerning your water utility, please contact Anna Wright, City of Panama City Laboratory Superintendent at 850-872-3194. We encourage our valued customers to be informed about their water utility. If you would like to learn more, The City of Panama City Commission holds regularly scheduled meetings on the second and fourth Tuesdays at 8:00 am.

The City of Panama City Utilities Department and Bay County Utility Services routinely monitor constituents in your drinking water according to Federal and State laws. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2018. Data obtained before January 1, 2018, and presented in this report are from the most recent testing done in accordance with laws, rules and regulations. All monitoring contaminants in the table were provided by the Bay County Utility Services except for copper, lead, chlorine and Stage 2 Disinfectants and Disinfection By-Products, which are provided by the City of Panama City Environmental Laboratory.

2018 CONTAMINANTS TABLE

TERMS AND ABBREVIATIONS

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Contaminant Level" is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ND - Not applicable

ND - not detected and the substance was not found by laboratory analysis.

NTU - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Parts per Million (ppm) or Milligrams per liter (mg/l) - One part per million corresponds to one part by weight of analyte to one million parts by weight of the water sample.

Parts per Billion (ppb) or Micrograms per liter(µg/l) - One part per billion corresponds to one part by weight of analyte to one billion parts by weight of the water sample.

Picocurie per liter (pCi/L) - Measure of the radioactivity in water

Treatment Technique(TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Microbiological Contaminants

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	MCL/ TT Violation Y/N	The Highest Single Measurement	The Lowest Monthly Percentage of Samples Meeting Regulatory Limits	MCLG	MCL	Likely Source of Contamination
Turbidity	Jan — Dec 2018	*Y	1.86	81.6	N/A	TT	Soil Runoff

Turbidity is a measure of cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of the filtration system. High turbidity can hinder the effectiveness of disinfectants. The Treatment Technique (TT) standard requires that 95% of the turbidity readings must be at 0.3 NTU or less.

NOTE: In an effort to protect our customers, Bay County issued a Mandatory Boil Water Notice on Oct 10, 2018 due to the potential damage expected by Hurricane Michael. Due to the severity of Hurricane Michael, the treatment facility suffered extensive damage. As the staff worked to reestablishing water service, the turbidity on Oct 15, 2018 did not meet the NTU requirements, resulting in a treatment technique standard violation for October. The issue was resolved by the next day and all turbidity samples since October 15th have met the required treatment technique standards. *Technically a treatment technique violation.

Radioactive Contaminants

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Radium 226+228 or combined Radium (pCi/l)	April 2017	N	1.5	N/A	0	5	Erosion of Natural Deposits

Inorganic Contaminants

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Barium (ppm)	April 2018	N	0.0065	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride (ppm)	April 2018	N	0.73	N/A	4	4.0	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at optimum level of 0.7 ppm
Nitrate (ppm)	April 2018	N	0.068	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	April 2018	N	4.3	N/A	N/A	160	Salt water intrusion, leaching from soil

Stage 2 Disinfectants and Disinfection By-Products

Disinfectant or Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	MCL or MRDL Violation	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
*Chlorine (ppm) (Stage 1)	Jan - Dec 2018	N	0.93	0.65– 1.1	MRDLG= 4	MRDL= 4.0	Water additive used to control microbes
*Haloacetic Acids (five) (HAA5) (ppb)	Jan – Dec 2018	N	34.5	3.86– 52.6	N/A	MCL = 60	By-product of drinking water disinfection
*Total Trihalomethanes (TTHM) (ppb)	Jan – Dec 2018	N	46.5	22.5– 63.18	N/A	MCL = 80	By-product of drinking water disinfection

Total Organic Carbon

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	TT Violation Y/N	Lowest Running, Annual Average, Computed Quarterly, of Monthly Removal Ratios	Range of Monthly Removal Ratios	MCLG	MCL	Likely Source of Contamination
Total Organic Carbon (TOC) (ppm)	Jan - Dec 2018	N	1.54	1.0– 2.3	N/A	TT	Naturally present in the environment

Lead and Copper (Tap Water)

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	AL Exceeded Y/N	90 th percentile result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
*Copper (ppm)	Sep 2017	N	0.52	0 of 30	1.3	1.3	Corrosion of household plumbing, erosion of natural deposits, leaching from wood
*Lead (tap water) (ppb)	Sep 2017	N	0.96	0 of 30	0	15	Corrosion of household plumbing systems, erosion of natural deposits

Unregulated Contaminants

Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	Level Detected (average)	Range	Likely Source of Contamination
Manganese (ppm)	Jun 18 – Dec 18	0.345	0.003– 1.02	Unavailable
Bromide (ppm)	Jun 18 – Dec 18	0.0169	0.012– 0.023	Unavailable
TOC (ppm)	Jun 18 – Dec 18	8.82	6.58– 11.30	Unavailable
HAA5 (ppb)	Jun 18 – Dec 18	30.69	12.13– 56.61	Unavailable
HA-ABr (ppb)	Jun 18 – Dec 18	6.24	3.80– 8.61	Unavailable
HAA9 (ppb)	Jun 18 – Dec 18	36.87	18.11– 65.91	Unavailable

*These contaminants were sampled by the City of Panama City. All other results were provided by Bay County Utility Services.

Bay County monitored for unregulated contaminants (UCs) in 2018 and will be again in the first 6 months of 2019 as part of a study to help the U.S. Environmental Protection Agency (EPA) determine the occurrence and if present in drinking water of 61 UCs and whether or not these contaminants need to be regulated. At present, no health standards (for example, maximum contaminant levels) or likely sources have been established for detection. For 2018, are shown on the table, but if you would like a copy of all Bay County's 2018 or 2019 UC data, please contact Bobby Gibbs at 850-248-5010 to get a copy as soon as they are available.

The City of Panama City will start monitoring the second 6-month period in 2019 and 2020 and the first 6-month period of 2020 for unregulated contaminants. As the staff worked to reestablishing water service, the turbidity on Oct 15, 2018 did not meet the NTU requirements, resulting in a treatment technique standard violation for October. The issue was resolved by the next day and all turbidity samples since October 15th have met the required treatment technique standards. *Technically a treatment technique violation.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants, can be particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Panama City is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When water has been sitting for several hours, you can minimize the exposure by flushing your tap for 30 seconds. When your water has been sitting for drinking or cooking, if you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available at the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and/or chemicals from the ground. If present, these contaminants can pose a health risk. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about some contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Califorms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found califorms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year, we were required to conduct a Level 1 assessment in December due to failing to take the required repeat samples after a total coliform positive sample. A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) what total coliform positive sample was found in our water system. The Level 1 assessment was completed in January 2019. We were required to take no corrective action. We have reviewed and updated our sampling plan to prevent this from recurring.

Drinking Water Hotline at 1-800-426-4791.

Califorms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found califorms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year, we were required to conduct a Level 1 assessment in December due to failing to take the required repeat samples after a total coliform positive sample. A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) what total coliform positive sample was found in our water system. The Level 1 assessment was completed in January 2019. We were required to take no corrective action. We have reviewed and updated our sampling plan to prevent this from recurring.

Califorms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found califorms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year, we were required to conduct a Level 1 assessment in December due to failing to take the required repeat samples after a total coliform positive sample. A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) what total coliform positive sample was found in our water system. The Level 1 assessment was completed in January 2019. We were required to take no corrective action. We have reviewed and updated our sampling plan to prevent this from recurring.

Califorms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found califorms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year, we were required to conduct a Level 1 assessment in December due to failing to take the required repeat samples after a total coliform positive sample. A Level 1 assessment is a study of the